Lecture 18 - Datching in the non-mysmal case First, a cosollary to our R=T therm The Lost p > 2 be prime and lost $p : G_B = G_{L2}(\overline{C}_p)$ bean cts representation satisfying the following L. p is unconstruct cruticides fin many portness. 2. $p|_{G_{Rp}} \approx \begin{pmatrix} \chi_1 & & \\ C & \chi_2 \end{pmatrix}$ with $\chi_1|_{T_p} = 1$ and $\chi_2|_{T_p} = e^{-1}$ 3. $\overline{p}|_{Gauss}$ is also investigated with consequents image. 4. $\overline{P}|_{FP}$ at which p is ramified, withen $-p|_{Ie} \approx \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}$ with $p(Ie) \rightarrow \overline{p}(Ie)$ is a iso $-\left(\frac{1}{2e} \cong 1 \mod m \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \right) = \left(\frac{1}{2e} \exp \left(\frac{1}{2e} \right) + 1\right)$ And that $\overline{P}|_{G_{Q_1}} \cong \left(\overline{X}, \times \right)$ with $\overline{X}, \overline{X}_2^{-1} \neq 1, \overline{6}$. 5. Q = Q g Per g e S2 (J; (N), R) with N= TT l PisrowAsed +L The p= pf for some Hacke ergenteun fe S2 (J7(NI, Ep). Prof Che chicks that assumptions of The = offer fixing a model for $p = G_{B} \rightarrow G_{L_2}(O')$, for O'ring of integral a An ext of R_p , p defines an O-alg han $R_s \rightarrow O'$ with S as in prov 2 lecture. The iso $R_p = T^{-1}(T)_m$, $S = S_{L_1}N_{S_1}U_{S_1}P_{S_2}$, implies F_{A_1} a O-alg han $\lambda = T_{S_1}(T)_m - S_{S_2}O'$ set V let S

cherpely p(Fsebe) = X - X (Te) X + l X (Se) ad such a λ is the every system of some $f \in S_2(T_i(N), \overline{O_p})$ I Rul 4 is restrictive. Here de ve get Nod Sit? Wiles & Numerical orifision Chevel to generalize, experiencing a revival) Kisin: present global det rings as algebras and local fland det Mings-Zweill explore this. Let's continue to assume that $p \in \overline{p}g$ is module and $\overline{p} \mid_{\mathcal{B}(\mathcal{U}_p)}$ is also inset with adequate image. But 1st's drap the "manuality hypotheses" so maybe the loved $\Gamma = \Gamma_{i}(N)$ has N not squarefres, and maybe we want to allow 1. Ats randered at l for some l of which Γ is incomitied. Say we have a def datim $S = (\overline{p}, 5, 0, 7, SD_v Sves), D_v \leq D_{\overline{p}}^{D_v \gamma_v}$ such that we can prove $\mathcal{C}_{\mathfrak{B}} \rightarrow \mathcal{G}_{\mathfrak{L}_{2}}(\mathcal{T}^{\mathfrak{S}}(\mathcal{I})_{\mathfrak{m}})$ is of type S and such that we expect all type S dols of The came from T⁵(T) And also assure that V VOS, the ring RV representing DV is O-flat and pure of dimension

- 1+3 p v+p - 1+3+1 iP v=p = 1+3+ [Fv: Qp] for F=Q 1 1 O dim of space of velues of Frob

We consider frans at I= 5 and 1st Rota & R.V is O-fled of dim 2+3157. Recall also that Rs=Rsôr When N=O[z_1,-,Z4151-1]

Pap 7 9 30 and a diagram PIN 2497 Robert Xy J $S_{AD} \longrightarrow R_{AD} \longrightarrow M_{AD} = c_{AD} R_{AD} - r_{AD} R_{AD}$ $R_{s} = R (Y, O)_{m}$ That La Mas is a Prits from Sa-mod Such 2. Vs have surg maps Rom R and Man M sil. br (Rom R) S. O. Ro and les (Mom M) = a Mo with $C_{z} = (z_{1}, z_{4151-1}, y_{1}, z_{4})$ 3. $\dim S_{z} = \dim R_{z}, i.z.$ 4151 + q = g + 2 + 3151.

Shorteh Patching similer to botters using - "Cass 2" computations of Goless other from loctors II+12 - fransel dot mays Ro to doting the maps $P_N: R_n \rightarrow R/\partial_N$ - medulos XN dolined using H_1(Y_QN, O) & R_SQN = H_1(Y_QN, O) R_SQN = H_1(Y_QN, O) R_SQN - M_1(Y_QN, O) R_SQN - M_1(Y_QN, O) R_SQN - M_1(Y_QN, O) R_SQN - M_1(Y_QN, O) R_SQN - R_SQN a fiss M[Aqu]-moduly. ر ر ر Lot's procosol as before din Ro = din Ro (Mas) = depth Ro (Mas) = depth = din So and din Ro = din So, so all these inequalities are equalities. Further Mos is a Cohon-Macaular Rio-module and Suppra (Mas) is a mon of insel components of Spec Rob. Picet Take any pG Speck, and let pas be its pullback to Ras The (Mas) pas # O by essemption Since Mas is for over Rab, Nakapana's Lenna =)

 $M_{m} \cong (M_{m}/ceM_{m})_{p} = (M_{m})_{p}/ce(M_{m})_{p} \neq 0$ So $p \in Supp_{R}(M)$. This implies that $Am_{R}(M)$ is nilpotent and suce R-action on M feders through $R = R_{g} \longrightarrow T^{s}(T)_{m}$ and T'(I) words forthfully on M, This map has nilpotent kound. I Rule Ro = TS (S) m is good enough te moduleosty lifting. (Not everythe the adjoint Bloch - Koto cajestines) So we wat to knew that Mas has full support a Spec Rao. Spec Ra = Spec Rg IX, _, xg] > Spec Rs is a bijectron on insel comparents, and any insel compensal X of Spec Rs is of the form X = TT X, with X, a insel of Spec R, ves Since Rs = @ R, ves Rs So for each ves, we vant to In Understand issed companying of Specky 2. Produce congruences from g (p=pg), which lies an are companying to other modular terms lying an other companyonents. vtp: - Use lovel roising/lowering using Thera's being (don't knew how to generalize to helper rank), as Taylor's Thera avoidance trick,

VIp: Mass difficult. Related & Brevil-Mizard conjerd Weight part & Serve's Conj.