Loctione 14 - The primes and mod fame, IT O, IF, p>2 as beters, 27 = mit of O F: Gais - GL2 (IP) abs innel P = Fg for g wt 2 lorof Tersian fire $\begin{aligned} \mathcal{T}^{s_{juns}} &:= \mathcal{O}[ST_{e}, S_{e}S_{l\notin S}] \\ \mathcal{T}^{s}(\mathcal{D}) &:= in (\mathcal{T}^{s_{juny}} \rightarrow End_{\mathcal{O}}[\mathcal{H}^{1}(Y, \mathcal{O})] \end{aligned}$ $Y = Y(\Gamma)$ The physical mot TS(T) that we also view as a max ideal on of TS, mr $\operatorname{Key Foot}: H'(Y, F)_{m} = \operatorname{Fif} + 1,$ Consegnance: Apply cohon to 0→0²⁵ 0→1F→0 and localize at m • H¹(Y, O) = C if ī≠1 • H¹(Y, O) is p-forsien five ond $H'(Y, O)_m \otimes_{\mathcal{F}} F \cong H^1(Y, F)_m$ Fixed TW dotin (G, SON Breg), defined F(G) := MAG (TV) NO Vo (G) For F(G) sit For (G)/FG = AG = Mox p-poins grobubol $\sum_{milely hor} T^{SUG}(G), T^{SVG}(M)$

Lance Lat $mQ = m \cap T^{SUG}, uiv$. The natural inclusion $T^{SUQ}(\Gamma)_{mQ} \to T^{S}(\Gamma)_{m}$ is a isomerphism. Poet By Newayoma's Lamme, it suffices to prevo TS(T) (ma)=15 This reduces to proving that for all VGQ TV,SV mad magin Since p is absolutely insolucible, we have Galois reps Qm ° Gq, s→Ghz (T(r)m) s.t ∀ leS, cherpely Qm(Frobe) = X²-TeX+lSe CmQ: Gassur -> Gh2(T(T), 0) st. + lessig cherpoly CmQ (Frobe) = X2 - Te X+ Se. Consider the Gal rep $Q := Q_m \mod(m^Q)$. Then $Y \& S \subseteq UQ, WS \mod$ $tr Q(Frobe) = tr Q_m(Frobe) \mod(m^Q)$ $= Te \mod(m^Q)$ $= Tr Q_m Q(Frobe) \mod(m^Q)$ $= tr Q_m Q(Frobe) \mod(m^Q)$ = tr Q (Frobe) $\in |F|$ By continuity of trop, we deduce that trop is IF-valued. The parts for VSQ,

Ty mad (m@) = trp(Frahv) G /F. Usud dat in place of tr shows Sy mael (mG) G/F for all VGQ as wall. In perficules, we see that H'(Y, O)me = H'(Y, O)m ovel similarly with IF-costAcients Because of this we will just write m = mG for Now ON-Dapine TQ = TSUQ, univ [SUQ, univ [SUQVGQ] For such VGG, choose QuG of QuG/F and define $m_{Q} = m_{q} = (m_{1}, \tilde{s}(l_{v} - \tilde{\alpha}_{v}) \tilde{s}_{v \in Q}) \subset \mathcal{T}_{Q}^{S v \in g}$ The of old fam => mg is in the supert of H¹(Ya(G), IF), although we will show this in the cowse of proving Piop 1 below. Assuming this Parner, note TSUQ (I2(G)) -> TQ (I2(G)) P N d FI - 1 is a nop of funte O-algs => TT (Ja(G)) Is a complete local May + TSUG (Ja(G)) M a complete sensilocal May, herce 2 the preduct of its local Mays and TSUG (Ja(G)) MG is one of these local Mays,

Prop1 The notwal map H'(Y, O) ->H'(Y_c (G), O) defines on isomosphies of TTSUB, un -machiles With inverse induced by the trace map, up to Ox To prove this first note that since these are both Pres O-modes and $\begin{array}{l} H'(Y, \mathcal{O})_{m} \otimes_{m_{Q}} F \cong H'(Y, F)_{m} \\ H'(Y_{*}(Q), \mathcal{O})_{m_{Q}} \otimes F \cong H'(Y_{*}(Q), F)_{m_{Q}} \end{array}$ it suffress to prove that H'(Y, IF)_m = H'(Y_0(Q), IF)_mq is an isomerphism (Exarcise). Let $K = GL_2(Z_V), I = S(ab) \in K \mid c = 0 \mod v$ For $U \leq K$ open compacts let $7b_u = convolution alog of comportly supported bi-U-inversat$ Fors $f = GL_2(B_V) \rightarrow |F$ (generated by double cosst operators [lbg/lbb, gGGL=(Br)) $S = M = H'(Y_{o}(G), F)_{m}$ $N = H^{1}(Y, IF)_{m}$ The M is on 19_{T} -module and N is a Hok-module.

Some isomorphisms below will depend an a choice of squeer rody
$$\sqrt{2}$$

of V in our coefficient field IF. But $V \equiv 1$ and p, so we can choose
 $\sqrt{2} = 1$.
We have $M_{W} \equiv W \equiv [T_{v}, S_{v}]$ with $T_{v} \equiv [M(V_{A})K]$, $S_{v} \equiv [K(V_{v})K]$.
Let T be the diagonal desire in Gh_{2} .
X.(T) be the opposed of ciclose $= \mathbb{Z}[\lambda_{1} + \mathbb{Z}[\lambda_{2} with - \lambda_{1}(t)] = (1 + 1), \lambda_{2}(t) = (1 + 1)$
 $W = S_{1}, v_{3}$ be the Wryl group
Sotole iso $= M_{W} \cong W \equiv [X_{v}(T)]^{W}$
 $T_{v} = v^{k} T_{v} \mapsto \lambda_{v} + \lambda_{2}$
 $S_{v} = vS_{v} \mapsto \lambda_{v}$
We have an analogous description of M_{1} :
Lammed 1: Using the f-ed that $v \equiv 1$ and p, we have
 $M_{1} \cong W \equiv [X_{v}(T) \neq M_{v}]$
 $[I_{v}(v]] \leftrightarrow \lambda \in X_{v}(T) \neq S_{v}, t_{v} \mapsto \lambda_{v}$
 $M_{1} \cong W \equiv [X_{v}(T) \neq M_{v}]$
 $[I_{v}(v]] \leftrightarrow W \in W$
 $\widehat{T} \cong W(T)$ is let be W
 $M_{1} \cong V = Z(M_{1}) \Rightarrow M_{k}$
 W and the comparison $\mathbb{Z}(M_{1}) \Rightarrow M_{k}$
 $F(X_{v}(T)]^{W} \cong Z(M_{1}) \Rightarrow M_{k}$
 $F(X_{v}(T)]^{W} \cong Z(M_{1}) \Rightarrow M_{k}$

Rul This Pollovs from the Bosnstein presentation, or Inchesi-Matsunda Arrsontation of HI. See Kheip- Thomp, Potential outomorphy and Isopoldt's carjecture, 35 for more details. Nots for leiter that mele this isomeophism $\lambda_1 \mapsto [I\lambda_1(v)Z] = [I(v'_1)I] = U_v$ Lannaz: The inclusion NGM is split by M->N XI->[K]X $\frac{D_{jce}f}{M = H^{2}(Y, Q), F_{m} \rightarrow N = H^{2}(Y, F)_{m}}{\chi \to [k]\chi}$ is the trace map (in transed group cohorology, it is constriction). Thus the composite $N \rightarrow M \stackrel{\text{les}}{\rightarrow} N$ is multiplication by $[K: I] = V + | \in || = \times c_{s} \quad v = 1 \text{ in } || F \text{ and } p > 2.$ Note That in HI $\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} + \begin{bmatrix} I \\ V_{c} \end{bmatrix}$ $= \begin{bmatrix} I \\ W_{c} \end{bmatrix} W$ Size [W] is invortible in IF, MW= (ZW)M, We also lenar that NSM. Then LEMMUZ GIVES $\mathcal{N} = \mathcal{M}^{W} = [K]\mathcal{M} = (\underset{w \in W}{\leq} w)\mathcal{M}$

We know that Tr and Sy act on N by art & ad av Br, sosp. Define the maximal ideal $\mathcal{M} = (\lambda_1 + \lambda_2 - \alpha_v - \beta_v, \lambda_1 \lambda_2 - \alpha_v \beta_v) \subset \mathbb{F}[\chi_*(\tau)]^{W} \cong \mathbb{F}[\tau_v, S_v]$ The Ny = No

Since $\alpha_v \neq \beta_v$, there are precisely two maximal ideals $m_{\alpha}, m_{\beta} \in [F[\chi_*(T)] = F[\lambda_1, \lambda_2]$ above T_{c} griss hy $m_{\alpha} = (\lambda_1 - \alpha_v, \lambda_2 - \beta_v)$ $m_{\beta} = (\lambda_1 - \beta_v, \lambda_2 - \alpha_v)$

Note that since X, correspondents la UN under the iso of Lemma b, $M_{m_{\alpha}} = H'(Y_{\alpha}(Q), |F)_{m_{Q}}$

So we want to show that the composition $N \rightarrow M \rightarrow M_{mo}$ i's CM (somes-phism.

Note that $N = N_n$ and $n = m_q \cap F[X_0(T)]$, so it suffices to show $N \rightarrow M_n \rightarrow M_{mq}$ is an isomorphism Lanner $3 \quad M \approx M_{m_{\beta}} \quad \text{and} \quad M_{m_{\beta}} \quad \text{and} \quad W_{\beta} \in \mathcal{M}_{m_{\alpha}} \quad M_{m_{\alpha}} \quad \text{isomerphically}$

Piet Suce M is Partir dimensional and F, The ection of IFEX.(T) In a Min factors through an Artiman qualisht A of IFEX. (T)]. Since May and Mip and the two distines naximal ideals at the Artiman Mine A, we have $A \cong A_{max} \times A_{max}$ which induces the decomposition $M \cong M_{max} \oplus M_{max}$ It is straightforword from the definitions that W premuters may and may and the 2nd close follows. D Now since N= M"= [K]M = $M_n^{\vee} = [K_n] M_n$ it follows that the composities $\mathcal{N} \to \mathcal{M}_{\mathcal{N}} = \mathcal{M}_{\mathcal{M}_{\mathcal{A}}} \oplus \mathcal{M}_{\mathcal{M}_{\beta}} \longrightarrow \mathcal{M}_{\mathcal{M}_{\mathcal{A}}}$ ad $\mathcal{M}_{m_{q}} \xrightarrow{\rightarrow} \mathcal{M}_{m_{q}} \oplus \mathcal{M}_{m_{\beta}} \xrightarrow{^{2}} \mathcal{M}_{m_{\gamma}} \xrightarrow{^{2}} \mathcal{N}$ are invorse isas, up to It.