HOMEWORK 3

This homework does not need to be submitted.

- 1. In this exercise we prove that any finite abelian group can be realized as a Galois group over Q.
 - (a) First prove the following special case of Dirichlet's Prime Number Theorem: For any integer $n \ge 2$ there are infinitely many primes p with $p \equiv 1 \pmod{n}$. (Hint: Assume there are only finitely many such p, and let m be their product. Let Φ_n be the nth cyclotomic polynomial. Explain why there must be some $x \in \mathbb{Z}$ and prime p such that $p|\Phi_n(xnm)$ and derive a contradiction.)
 - (b) Prove that for any finite abelian group A there is a Galois extension F/\mathbb{Q} with $Gal(F/\mathbb{Q}) \cong$ Α.
- **2.** Let F/\mathbb{Q} be quadratic and let d_F be the discriminant of F. Prove that $F \subseteq \mathbb{Q}(\zeta)$ with ζ a primitive d_F -th root of unity, and that this is the smallest cyclotomic field containing F.
- **3.** Let ζ be a primitive *n*th root of 1. Prove that $\mathbb{Z}[\zeta + \zeta^{-1}]$ is the ring of integers of $\mathbb{Q}(\zeta + \zeta^{-1})$.
- **4.** Let ζ be a primitive *n*th root of 1 and let $\mathbb{Q}(\zeta)^+ = \mathbb{Q}(\zeta + \zeta^{-1})$ be the maximal totally real subfield of $\mathbb{Q}(\zeta)$.
 - (a) Prove that if $n = p^r$ with p a prime, then there is a unique prime ideal P of $\mathbb{Q}(\zeta)^+$ above p, it ramified in $\mathbb{Q}(\zeta)$, and $\mathbb{Q}(\zeta)/\mathbb{Q}(\zeta)^+$ is unramified at all other prime ideals of $\mathbb{Q}(\zeta)^+$. (This follows very quickly from what we did in class, but I wanted to include this to contrast it with the next part.)
 - (b) Prove that if *n* is not a prime power, then all prime ideals of $\mathbb{Q}(\zeta)^+$ are unramified in $\mathbb{Q}(\zeta)$. (You may use without proof the following fact: if F is a number field, K/F and L/F are two finite extension, and P is a prime ideal of O_F that is unramified in K, then any prime in *L* above *P* is unramified in the compositum *KL*.)
- 5. Recall from earlier homework that if F is a CM field with maximal totally real subfield F^+ , and $\mu(F)$ is the group of roots of unity in *F*, then $\mu(F)O_{F^+}^{\times}$ has index at most 2 in O_F^{\times} . This was proved by showing that the map $\psi : O_F^{\times} \to \mu(F)$ given by $\psi(\varepsilon) = \varepsilon/c(\varepsilon)$, with *c* the nontrivial element of $Gal(F/F^+)$, induces an injection $\mathcal{O}_F^{\times}/\mu(F)\mathcal{O}_{F^+}^{\times} \hookrightarrow \mu(F)/\mu(F)^2$.

We now consider the case where F is a cyclotomic field, and let $F = \mathbb{Q}(\zeta)$ with ζ a primitive *n*th root of 1 with *n* either odd or divisible by 4.

- (a) Prove that if *n* is a prime power, then $\mu(F)O_{F^+}^{\times} = O_F^{\times}$. (Hint: You need to show that $\varepsilon/c(\varepsilon) \in \mu(F)^2$ for any unit ε .
 - When the prime is odd, explain why this is equivalent to $\varepsilon/c(\varepsilon) \neq -\zeta^{j}$ for any j. Then show that this can't happen by considering congruences modulo the prime $(1 - \zeta).$
 - When the prime is 2, explain why this is equivalent to $\varepsilon/c(\varepsilon)$ not being a primitive *n*th root of unity. Then show that this can't happen by considering norms from $\mathbb{Q}(\zeta)$ to $\mathbb{Q}(i)$.)
- (b) Prove that if *n* is not a prime power, then $\mu(F)O_{F^+}^{\times} \neq O_F^{\times}$. (Hint: Under the assumption that *n* is not a prime power, you proved on a previous homework that $1 - \zeta$ is a unit $\mathbb{Z}[\zeta]$. Consider ψ applied to this unit.)

- **6.** Let *D* be a unique factorization domain with fraction field *F* and let $f \in D$ be irreducible. Prove that there is a unique additive valuation $v : F \to \mathbb{R} \cup \{\infty\}$ such that v(f) = 1 and v(g) = 0 for any irreducible $g \in D$ not associate to *f*.
- 7. Let *k* be a field and let k(T) be the fraction field of the polynomial ring k[T]
 - (a) Since k(T) is the fraction field of the polynomial ring $k[T^{-1}]$, we have the T^{-1} -adic additive valuation on k(T) (it is the unique additive valuation on k(T) satisfying $v(T^{-1}) = 1$). Describe its restriction to k[T].
 - (b) Show that any nontrivial additive valuation on k(T) that is trivial on k is equivalent to either the T⁻¹-adic valuation from part (a) or the *f*-adic valuation for some irreducible f ∈ k[T].

Remark. Part (b) shows that equivalence classes of nontrivial additive valuations (or nontrivial nonarchimedean absolute values) that are trivial on k are in bijection with the points of one-dimensional projective space \mathbb{P}_k^1 defined over k. This fact remains true for any smooth projective curve C over k, replacing k(T) with the function field k(C) of C.

- **8.** Let *F* be a field equipped with a nontrivial nonarchimedean absolute value $|\cdot|$ and let *O* be the corresponding valuation ring.
 - (a) For any real r > 0, let $B_r = \{x \in F \mid |x| < r\}$ and $C_r = \{x \in F \mid |x| \le r\}$. Prove that B_r and C_r are O-submodules of F.
 - (b) For any real 0 < r < 1, let $U_r = \{x \in F \mid |x 1| < r\}$ and $V_r = \{x \in F \mid |x 1| \le r\}$. Show that U_r and V_r are subgroups of O^{\times} .
- **9.** Let *F* be a field equipped with a nontrivial nonarchimedean absolute value $|\cdot|$ and let *O* be the valuation ring.
 - (a) Prove that the ideals of *O* are totally ordered by inclusion.
 - (b) Prove that any finitely generated ideal of *O* is principal.
 - (c) Prove that if $|\cdot|$ is not discrete, then *O* is not Noetherian.
- **10.** Let *k* be a finite field of cardinality *q*. Note that any absolute value on *k* is necessarily trivial (any nonzero element is a root of 1). So by Question 7 above, any nontrivial additive valuation v on k(T) is equivalent to precisely one of:
 - (i) the *f*-adic valuation v_f associated to some monic irreducible $f \in k[T]$,
 - (ii) the T^{-1} -adic valuation $v_{T^{-1}}$.
 - Define absolute values $|\cdot|_v$ by

(i) $|\cdot|_v = (q^{\deg(f)})^{-v(\cdot)}$ if $v = v_f$ for $f \in k[T]$ monic and irreducible,

(ii) $|\cdot|_v = q^{-v(\cdot)}$ if $v = v_{T^{-1}}$.

Prove the product formula:

$$\prod_{v} |x|_{v} = 1 \quad \text{for any} \quad x \in k(T)^{\times}.$$

Remark. The set of valuations v above are in bijection with the points of projective space \mathbb{P}^1 defined over k. The T^{-1} -adic valuation can be thought of as corresponding to the "point at infinity:" $\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\}$. So considering all the valuations defined using irreducibles in k[T], we are missing one "coming from infinity," and upon including this one, we have the product formula.

Compare this with \mathbb{Q} : we have a collection of absolute values $|\cdot|_p$ associated to each (associate class of) irreducibles p in \mathbb{Z} , and upon adding the one missing (i.e. the archimedean

one), we have the product formula. This analogy partially motivates the the reason the archimedean absolute value on \mathbb{Q} is denoted by $|\cdot|_{\infty}$.

- **11.** Let *F* be a field equipped with a nonarchimedean absolute value $|\cdot|$ and its induced topology.
 - (a) Prove that any open ball is a closed set (so this topology has a basis of clopen sets).
 - (b) Prove that *F* is totally disconnected (i.e. any nonempty open set can be written as the disjoint union of two nonempty open sets).
- **12.** Let $|\cdot|$ be an absolute value on a field *F* and give *F* the topology induced by $|\cdot|$. Prove that if *F* is locally compact, then *F* is complete. (This holds more generally for any metric group.)
- **13.** Let *F* be a field complete with respect to a discrete nonarchimedean absolute value. Let *O* be its valuation ring and let *k* be its residue field. Prove that $F \cong k((T))$ if and only if *O* contains a field *k'* that maps isomorphically onto *k* via the quotient map $O \rightarrow k$.

Remark. It can be shown that such a k' always exists when char(F) = char(k) (which is clearly a necessary condition).

- **14.** Let *F* be a field complete with respect to a nontrivial nonarchimedean absolute value $|\cdot|$. Let *O* be the valuation ring of *F* and let *k* be the residue field. Prove that the following are equivalent.
 - (a) *F* is locally compact.
 - (b) *O* is compact.
 - (c) $|\cdot|$ is discrete and *k* is finite.
- **15.** (a) Let *p* be an odd prime. Prove that $x \in \mathbb{Q}_p^{\times}$ is a (p-1)m-th power in \mathbb{Q}_p for all integers $m \ge 1$ coprime with *p* if and only if $x \in 1 + p\mathbb{Z}_p$.
 - (b) Prove that $x \in \mathbb{Q}_2^{\times}$ is a 2*m*-th power in \mathbb{Q}_p for all odd integers $m \ge 1$ if and only if $x \in 1 + 8\mathbb{Z}_p$.
 - (c) Use (a) and (b) to prove that for any prime p, the only field automorphism of \mathbb{Q}_p is the identity.

Remark. Note that this is also true of \mathbb{R} . In both cases, the algebraic structure of the field determines its topology, so field automorphism are forced to be continuous. This continuity and the density of \mathbb{Q} then forces the automorphism to be the identity.

- **16.** Give an example of a field *F* that is complete with respect to a nontrivial nonarchimedean absolute value $|\cdot|$ with algebraically closed residue field but such that *F* is not algebraically closed. Explain why this does not violate Hensel's Lemma. What does this say about irreducible polynomials in *F*[*X*]?
- **17.** Prove that $(X^2 2)(X^2 17)(X^2 34)$ has a root in \mathbb{Q}_p for every prime p. (Note that it also has a root in \mathbb{R} . So this polynomial has a root in all completions of \mathbb{Q} , but not in \mathbb{Q} itself.)
- **18.** (a) Let *F* be a field complete with respect to a discrete nonarchimedean absolute value. Prove that an algebraic closure of *F* has infinite degree over *F*.
 - (b) Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p . Construct a Cauchy sequence in $\overline{\mathbb{Q}}_p$ that does not converge in $\overline{\mathbb{Q}}_p$.

19. Let *F* be an algebraically closed field equipped with a nontrivial nonarchimedean absolute value $|\cdot|$. Define $||\cdot||$ on *F*[X] by

 $||a_0 + \cdots + a_n X^n|| = \max\{|a_0|, \dots, |a_n|\}.$

It can be shown that $\|\cdot\|$ extends to a nonarchimedean aboslute value on F(X).

- Let $f, g \in F[X]$ be monic of the same degree n, and let $\alpha \in F$ be a root of f.
- (a) Show that $|\alpha| \leq ||f||$.
- (b) Show that $|g(\alpha)| \le ||f g|| ||f||^{n-1}$.
- (c) Show that there is a root $\beta \in F$ of g such that

$$|\alpha - \beta| \le ||f - g||^{1/n} ||f||.$$

(This property is known as continuity of roots.)

20. Let *F* be an algebraically closed field equipped with a nontrivial nonarchimedean absolute value $|\cdot|$. Prove that the completion of *F* is algebraically closed.

Remark. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p . We know that $|\cdot|_p$ extends uniquely to $\overline{\mathbb{Q}}_p$. By Question 18.(b), $\overline{\mathbb{Q}}_p$ is not complete. But by Question 20, its completion is algebraically closed. This is (up to isomorphism) the smallest algebraically closed complete field extension of \mathbb{Q}_p . For this reason it is often denoted \mathbb{C}_p and thought of as the "*p*-adic complex numbers."