
HOMEWORK 3

This homework does not need to be submitted.

1. In this exercise we prove that any finite abelian group can be realized as a Galois group over
Q.
(a) First prove the following special case of Dirichlet’s Prime Number Theorem: For any

integer 𝑛 ≥ 2 there are infinitely many primes 𝑝 with 𝑝 ≡ 1 (mod 𝑛). (Hint: Assume
there are only finitely many such 𝑝, and let 𝑚 be their product. Let Φ𝑛 be the 𝑛th
cyclotomic polynomial. Explain why there must be some 𝑥 ∈ Z and prime 𝑝 such that
𝑝 |Φ𝑛(𝑥𝑛𝑚) and derive a contradiction.)

(b) Prove that for any finite abelian group𝐴 there is a Galois extension 𝐹/Qwith Gal(𝐹/Q) �
𝐴.

2. Let 𝐹/Q be quadratic and let 𝑑𝐹 be the discriminant of 𝐹. Prove that 𝐹 ⊆ Q(𝜁) with 𝜁 a
primitive 𝑑𝐹-th root of unity, and that this is the smallest cyclotomic field containing 𝐹.

3. Let 𝜁 be a primitive 𝑛th root of 1. Prove that Z[𝜁 + 𝜁−1] is the ring of integers of Q(𝜁 + 𝜁−1).

4. Let 𝜁 be a primitive 𝑛th root of 1 and let Q(𝜁)+ = Q(𝜁 + 𝜁−1) be the maximal totally real
subfield of Q(𝜁).
(a) Prove that if 𝑛 = 𝑝𝑟 with 𝑝 a prime, then there is a unique prime ideal 𝑃 ofQ(𝜁)+ above

𝑝, it ramified in Q(𝜁), and Q(𝜁)/Q(𝜁)+ is unramified at all other prime ideals of Q(𝜁)+.
(This follows very quickly from what we did in class, but I wanted to include this to
contrast it with the next part.)

(b) Prove that if 𝑛 is not a prime power, then all prime ideals of Q(𝜁)+ are unramified in
Q(𝜁). (You may use without proof the following fact: if 𝐹 is a number field, 𝐾/𝐹 and
𝐿/𝐹 are two finite extension, and 𝑃 is a prime ideal of 𝒪𝐹 that is unramified in 𝐾, then
any prime in 𝐿 above 𝑃 is unramified in the compositum 𝐾𝐿.)

5. Recall from earlier homework that if 𝐹 is a CM field with maximal totally real subfield 𝐹+,
and 𝜇(𝐹) is the group of roots of unity in 𝐹, then 𝜇(𝐹)𝒪×

𝐹+ has index at most 2 in 𝒪×
𝐹

. This
was proved by showing that the map 𝜓 : 𝒪×

𝐹
→ 𝜇(𝐹) given by 𝜓(𝜀) = 𝜀/𝑐(𝜀), with 𝑐 the

nontrivial element of Gal(𝐹/𝐹+), induces an injection 𝒪×
𝐹
/𝜇(𝐹)𝒪×

𝐹+ ↩→ 𝜇(𝐹)/𝜇(𝐹)2.
We now consider the case where 𝐹 is a cyclotomic field, and let 𝐹 = Q(𝜁)with 𝜁 a primitive

𝑛th root of 1 with 𝑛 either odd or divisible by 4.
(a) Prove that if 𝑛 is a prime power, then 𝜇(𝐹)𝒪×

𝐹+ = 𝒪×
𝐹

.
(Hint: You need to show that 𝜀/𝑐(𝜀) ∈ 𝜇(𝐹)2 for any unit 𝜀.

- When the prime is odd, explain why this is equivalent to 𝜀/𝑐(𝜀) ≠ −𝜁 𝑗 for any 𝑗.
Then show that this can’t happen by considering congruences modulo the prime
(1 − 𝜁).

- When the prime is 2, explain why this is equivalent to 𝜀/𝑐(𝜀) not being a primitive
𝑛th root of unity. Then show that this can’t happen by considering norms from
Q(𝜁) to Q(𝑖).)

(b) Prove that if 𝑛 is not a prime power, then 𝜇(𝐹)𝒪×
𝐹+ ≠ 𝒪×

𝐹
. (Hint: Under the assumption

that 𝑛 is not a prime power, you proved on a previous homework that 1 − 𝜁 is a unit
Z[𝜁]. Consider 𝜓 applied to this unit.)
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6. Let 𝐷 be a unique factorization domain with fraction field 𝐹 and let 𝑓 ∈ 𝐷 be irreducible.
Prove that there is a unique additive valuation 𝑣 : 𝐹 → R ∪ {∞} such that 𝑣( 𝑓 ) = 1 and
𝑣(𝑔) = 0 for any irreducible 𝑔 ∈ 𝐷 not associate to 𝑓 .

7. Let 𝑘 be a field and let 𝑘(𝑇) be the fraction field of the polynomial ring 𝑘[𝑇]
(a) Since 𝑘(𝑇) is the fraction field of the polynomial ring 𝑘[𝑇−1], we have the 𝑇−1-adic

additive valuation on 𝑘(𝑇) (it is the unique additive valuation on 𝑘(𝑇) satisfying 𝑣(𝑇−1) =
1). Describe its restriction to 𝑘[𝑇].

(b) Show that any nontrivial additive valuation on 𝑘(𝑇) that is trivial on 𝑘 is equivalent to
either the 𝑇−1-adic valuation from part (a) or the 𝑓 -adic valuation for some irreducible
𝑓 ∈ 𝑘[𝑇].

Remark. Part (b) shows that equivalence classes of nontrivial additive valuations (or nontriv-
ial nonarchimedean absolute values) that are trivial on 𝑘 are in bĳection with the points of
one-dimensional projective space P1

𝑘
defined over 𝑘. This fact remains true for any smooth

projective curve 𝐶 over 𝑘, replacing 𝑘(𝑇) with the function field 𝑘(𝐶) of 𝐶.

8. Let 𝐹 be a field equipped with a nontrivial nonarchimedean absolute value |·| and let 𝒪 be
the corresponding valuation ring.
(a) For any real 𝑟 > 0, let 𝐵𝑟 = {𝑥 ∈ 𝐹 | |𝑥 | < 𝑟} and 𝐶𝑟 = {𝑥 ∈ 𝐹 | |𝑥 | ≤ 𝑟}. Prove that 𝐵𝑟

and 𝐶𝑟 are 𝒪-submodules of 𝐹.
(b) For any real 0 < 𝑟 < 1, let 𝑈𝑟 = {𝑥 ∈ 𝐹 | |𝑥 − 1| < 𝑟} and 𝑉𝑟 = {𝑥 ∈ 𝐹 | |𝑥 − 1| ≤ 𝑟}.

Show that𝑈𝑟 and 𝑉𝑟 are subgroups of 𝒪×.

9. Let 𝐹 be a field equipped with a nontrivial nonarchimedean absolute value |·| and let 𝒪 be
the valuation ring.
(a) Prove that the ideals of 𝒪 are totally ordered by inclusion.
(b) Prove that any finitely generated ideal of 𝒪 is principal.
(c) Prove that if |·| is not discrete, then 𝒪 is not Noetherian.

10. Let 𝑘 be a finite field of cardinality 𝑞. Note that any absolute value on 𝑘 is necessarily
trivial (any nonzero element is a root of 1). So by Question 7 above, any nontrivial additive
valuation 𝑣 on 𝑘(𝑇) is equivalent to precisely one of:

(i) the 𝑓 -adic valuation 𝑣 𝑓 associated to some monic irreducible 𝑓 ∈ 𝑘[𝑇],
(ii) the 𝑇−1-adic valuation 𝑣𝑇−1 .

Define absolute values |·|𝑣 by
(i) |·|𝑣 = (𝑞deg( 𝑓 ))−𝑣(·) if 𝑣 = 𝑣 𝑓 for 𝑓 ∈ 𝑘[𝑇] monic and irreducible,

(ii) |·|𝑣 = 𝑞−𝑣(·) if 𝑣 = 𝑣𝑇−1 .
Prove the product formula:∏

𝑣

|𝑥 |𝑣 = 1 for any 𝑥 ∈ 𝑘(𝑇)×.

Remark. The set of valuations 𝑣 above are in bĳection with the points of projective space P1

defined over 𝑘. The 𝑇−1-adic valuation can be thought of as corresponding to the “point
at infinity:" P1 = A1 ∪ {∞}. So considering all the valuations defined using irreducibles in
𝑘[𝑇], we are missing one “coming from infinity," and upon including this one, we have the
product formula.

Compare this with Q: we have a collection of absolute values |·|𝑝 associated to each (as-
sociate class of) irreducibles 𝑝 in Z, and upon adding the one missing (i.e. the archimedean
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one), we have the product formula. This analogy partially motivates the the reason the
archimedean absolute value on Q is denoted by |·|∞.

11. Let 𝐹 be a field equipped with a nonarchimedean absolute value |·| and its induced topology.
(a) Prove that any open ball is a closed set (so this topology has a basis of clopen sets).
(b) Prove that 𝐹 is totally disconnected (i.e. any nonempty open set can be written as the

disjoint union of two nonempty open sets).

12. Let |·| be an absolute value on a field 𝐹 and give 𝐹 the topology induced by |·|. Prove that if
𝐹 is locally compact, then 𝐹 is complete. (This holds more generally for any metric group.)

13. Let 𝐹 be a field complete with respect to a discrete nonarchimedean absolute value. Let
𝒪 be its valuation ring and let 𝑘 be its residue field. Prove that 𝐹 � 𝑘((𝑇)) if and only if 𝒪
contains a field 𝑘′ that maps isomorphically onto 𝑘 via the quotient map 𝒪 → 𝑘.

Remark. It can be shown that such a 𝑘′ always exists when char(𝐹) = char(𝑘) (which is clearly
a necessary condition).

14. Let 𝐹 be a field complete with respect to a nontrivial nonarchimedean absolute value |·|.
Let 𝒪 be the valuation ring of 𝐹 and let 𝑘 be the residue field. Prove that the following are
equivalent.
(a) 𝐹 is locally compact.
(b) 𝒪 is compact.
(c) |·| is discrete and 𝑘 is finite.

15. (a) Let 𝑝 be an odd prime. Prove that 𝑥 ∈ Q×
𝑝 is a (𝑝 − 1)𝑚-th power in Q𝑝 for all integers

𝑚 ≥ 1 coprime with 𝑝 if and only if 𝑥 ∈ 1 + 𝑝Z𝑝 .
(b) Prove that 𝑥 ∈ Q×

2 is a 2𝑚-th power in Q𝑝 for all odd integers 𝑚 ≥ 1 if and only if
𝑥 ∈ 1 + 8Z𝑝 .

(c) Use (a) and (b) to prove that for any prime 𝑝, the only field automorphism of Q𝑝 is the
identity.

Remark. Note that this is also true of R. In both cases, the algebraic structure of the field
determines its topology, so field automorphism are forced to be continuous. This continuity
and the density of Q then forces the automorphism to be the identity.

16. Give an example of a field 𝐹 that is complete with respect to a nontrivial nonarchimedean
absolute value |·| with algebraically closed residue field but such that 𝐹 is not algebraically
closed. Explain why this does not violate Hensel’s Lemma. What does this say about
irreducible polynomials in 𝐹[𝑋]?

17. Prove that (𝑋2 − 2)(𝑋2 − 17)(𝑋2 − 34) has a root in Q𝑝 for every prime 𝑝. (Note that it also
has a root in R. So this polynomial has a root in all completions of Q, but not in Q itself.)

18. (a) Let 𝐹 be a field complete with respect to a discrete nonarchimedean absolute value.
Prove that an algebraic closure of 𝐹 has infinite degree over 𝐹.

(b) Let Q𝑝 be an algebraic closure of Q𝑝 . Construct a Cauchy sequence in Q𝑝 that does not
converge in Q𝑝 .
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19. Let 𝐹 be an algebraically closed field equipped with a nontrivial nonarchimedean absolute
value |·|. Define ∥·∥ on 𝐹[𝑋] by

∥𝑎0 + · · · + 𝑎𝑛𝑋𝑛 ∥ = max{|𝑎0 |, . . . , |𝑎𝑛 |}.
It can be shown that ∥·∥ extends to a nonarchimedean aboslute value on 𝐹(𝑋).

Let 𝑓 , 𝑔 ∈ 𝐹[𝑋] be monic of the same degree 𝑛, and let 𝛼 ∈ 𝐹 be a root of 𝑓 .
(a) Show that |𝛼 | ≤ ∥ 𝑓 ∥.
(b) Show that |𝑔(𝛼)| ≤ ∥ 𝑓 − 𝑔∥∥ 𝑓 ∥𝑛−1.
(c) Show that there is a root 𝛽 ∈ 𝐹 of 𝑔 such that

|𝛼 − 𝛽 | ≤ ∥ 𝑓 − 𝑔∥1/𝑛 ∥ 𝑓 ∥.
(This property is known as continuity of roots.)

20. Let 𝐹 be an algebraically closed field equipped with a nontrivial nonarchimedean absolute
value |·|. Prove that the completion of 𝐹 is algebraically closed.

Remark. Let Q𝑝 be an algebraic closure of Q𝑝 . We know that |·|𝑝 extends uniquely to Q𝑝 .
By Question 18.(b), Q𝑝 is not complete. But by Question 20, its completion is algebraically
closed. This is (up to isomorphism) the smallest algebraically closed complete field extension
ofQ𝑝 . For this reason it is often denotedC𝑝 and thought of as the “𝑝-adic complex numbers."


