
HOMEWORK 2

Do at least 5 questions. Due November 6 at 11:59pm.

1. In this exercise, we show that every nonnegative integer is the sum of four squares.
This is trival for 0, 1, and 2, and there is an identity

(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)(𝐴2 + 𝐵2 + 𝐶2 + 𝐷2) = (𝑎𝐴 − 𝑏𝐵 − 𝑐𝐶 − 𝑑𝐷)2 + (𝑎𝐵 + 𝑏𝐴 + 𝑐𝐷 − 𝑑𝐶)2

+ (𝑎𝐶 − 𝑏𝐷 + 𝑐𝐴 + 𝑑𝐵)2 + (𝑎𝐷 + 𝑏𝐶 − 𝑐𝐵 + 𝑑𝐴)2.

So we are reduced to showing that every odd prime 𝑝 is the sum of four squares. Prove this
via the following.
(a) Explain why the congruence 𝑚2 + 𝑛2 + 1 ≡ 0 (mod 𝑝) has a solutions in integers.
(b) Fix a solution 𝑛, 𝑚 to the congruence in part (a), and let Λ ⊆ Z4 be the set of (𝑎, 𝑏, 𝑐, 𝑑)

such that 𝑐 ≡ 𝑚𝑎 + 𝑛𝑏 (mod 𝑝) and 𝑑 ≡ 𝑚𝑏 − 𝑛𝑎 (mod 𝑝). Show that Λ is a lattice in
R4 with covolume 𝑝2.

(c) Use Minkowski’s Theorem to show there is (𝑎, 𝑏, 𝑐, 𝑑) ∈ Λ such that 𝑎2+𝑏2+ 𝑐2+𝑑2 = 𝑝.

2. Let 𝐹 be a number field with ring of integers 𝒪𝐹. For any nonzero ideal 𝐼 ⊆ 𝒪𝐹, show that
𝑁(𝐼) = |𝒪𝐹/𝐼 | extends to a homomorphism 𝑁 : Id(𝒪𝐹) → Q×, where Id(𝒪𝐹) is the group of
fractional ideals of 𝒪𝐹.

3. Determine all quadratic fields 𝐹/Q such that 1
2
( 4
𝜋

) 𝑠 √|𝑑𝐹 | < 2, where 𝑑𝐹 is the discriminant
of 𝐹, 𝑠 = 0 if 𝐹 is real quadratic, and 𝑠 = 1 if 𝐹 is imaginary quadratic. Deduce that they all
have class number 1.

4. Let 𝐹/Q be quadratic and write 𝐹 = Q(
√
𝑑) with 𝑑 ≠ 0, 1 square free.

(a) Show that for any 𝑝 | 𝑑, the ideal 𝑃 = (𝑝,
√
𝑑) of 𝒪𝐹 is prime and satisfies 𝑃2 = (𝑝).

(b) Let 𝑝1 , . . . , 𝑝𝑟 be the distinct prime divisors of 𝑑. By part (a), we have prime ideals
𝑃1 , . . . , 𝑃𝑟 of 𝒪𝐹 such that 𝑃2

𝑖
= (𝑝𝑖). Show that 𝑃1 · · · 𝑃𝑟 = (

√
𝑑).

(c) Assume that 𝐹 is imaginary and let 𝑃1 , . . . , 𝑃𝑟 be as in part (b). Show that for any
1 ≤ 𝑘 < 𝑟, the ideal 𝑃1 · · · 𝑃𝑘 is not principal. Deduce that Cl(𝐹) contains a subgroup
isomorphic to a product of 𝑟 − 1 cyclic groups of order 2.

5. Let 𝐹 be a number field.
(a) Let 𝐼 ⊆ 𝒪𝐹 be a nonzero ideal. Show that if 𝑛 ≥ 0 is an integer such that 𝐼𝑛 = (𝑎), then

𝐼 generates a principal ideal in the ring of integers of 𝐹( 𝑛
√
𝑎).

(b) Show that there is a finite extension 𝐸/𝐹 such that every fractional ideal 𝐼 of 𝐹 generates
a principal fractional ideal of 𝐸.

6. Let 𝐴 be a Dedekind ring with fraction field 𝐹. Let 𝐸/𝐹 be a finite separable extension, and
let 𝐵 be the integral closure of 𝐴 in 𝐸. Let 𝑏 ∈ 𝐵 be nonzero.
(a) Show that N𝐸/𝐹(𝑏)

𝑏
∈ 𝐵.

(b) Show that 𝑏 ∈ 𝐵× if and only if N𝐸/𝐹(𝑏) ∈ 𝐴×.
(c) Give an example of a number field 𝐸 and 0 ≠ 𝑥 ∈ 𝐸 such that N𝐸/Q(𝑥) = ±1 but 𝑥 ∉ 𝒪𝐸.
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7. Let 𝐹 be a real quadratic field with discriminant 𝑑 = 𝑑𝐹. Recall that 𝑑 is either 0 or 1 mod 4.
Fix some embedding 𝜎 : 𝐹 ↩→ R and using it identify 𝐹 with Q(

√
𝑑).

(a) Explain why there is 𝜀 ∈ 𝒪×
𝐹

such that 𝜎(𝜀) > 1 and is minimal with this property.
Show that such an 𝜀 is a fundamental unit.

(b) Assume that there are solutions 𝑎, 𝑏 ∈ Z to

𝑎2 − 𝑑𝑏2 = −4.

Show that if 𝑎, 𝑏 ≥ 1 are minimal, then 𝜀 = 𝑎+𝑏
√
𝑑

2 is a fundamental unit.
(c) Assume that there are no solutions 𝑎, 𝑏 ∈ Z to 𝑎2 − 𝑑𝑏2 = −4. Then show that there are

solutions 𝑎, 𝑏 ∈ Z to
𝑎2 − 𝑑𝑏2 = 4,

and that if 𝑎, 𝑏 ≥ 1 are minimal, then 𝜀 = 𝑎+𝑏
√
𝑑

2 is a fundamental unit.

Definition. Let 𝐹 be a number field. We say 𝐹 is totally real if every embedding of 𝐹 into C is a real
embedding. We say 𝐹 is totally imaginary if 𝐹 has no real embeddings. We say 𝐹 is CM if it is a
totally imaginary quadratic extension of a totally real field.

8. Let 𝐸 be a CM field with maximal totally real subfield 𝐹 (so [𝐸 : 𝐹] = 2). Prove that the
index of 𝜇(𝐸)𝒪×

𝐹
in 𝒪×

𝐸
is at most 2. (Hint: Let 𝑐 be the nontrivial element of Gal(𝐸/𝐹) and

consider the map 𝜀 ↦→ 𝑐(𝜀)
𝜀 .)

9. Let 𝐹 be a totally real number field. Let 𝑆 be a proper nonempty subset of the embeddings
{𝜎 : 𝐹 ↩→ R}. Show that there is 𝜀 ∈ 𝒪×

𝐹
such that 0 < 𝜎(𝜀) < 1 for all 𝜎 ∈ 𝑆 and 𝜎(𝜀) > 1 for

all 𝜎 ∉ 𝑆. (Hint: Letting 𝑛 = [𝐹 : Q], we know that Log(𝑗(𝒪×
𝐹
)) is a lattice in the trace zero

subspace 𝐻 of R𝑛 . Consider an appropriate translate an appropriate bounded region in 𝐻.)

10. Let 𝐴 be a Dedekind ring with field of fractions 𝐹. Let 𝐸/𝐹 be a finite separable extension
and let 𝐵 be the integral closure of 𝐴 in 𝐸. For a nonzero prime ideal 𝑄 of 𝐵 dividing the
prime ideal 𝑃 of 𝐴, let 𝑓 (𝑄) = [𝐵/𝑄 : 𝐴/𝑃] be the residue degree. Define a homomorphism
Nm𝐵/𝐴 : Id(𝐵) → Id(𝐴) by setting Nm𝐵/𝐴(𝑄) = 𝑃 𝑓 (𝑄) if 𝑄 is a nonzero prime ideal of 𝐵 and
𝑄 ∩ 𝐴 = 𝑃.
(a) Show that for 0 ≠ 𝑥 ∈ 𝐸, we have Nm𝐵/𝐴(𝑥𝐵) = Nm𝐸/𝐹(𝑥)𝐴 (here 𝑥𝐵 denotes the

principal fractional ideal generated by 𝑥, and similar notation for 𝐴).
(b) Show that if 𝐴 = Z and 𝐸 is a number field, then Nm𝒪𝐸/Z(𝐼) = |𝒪𝐸/𝐼 |Z for any nonzero

ideal 𝐼 of 𝒪𝐸 (so Nm𝒪𝐸/Z recovers our previous definition of the absolute norm).

11. Let 𝐹 = Q(𝛼) where 𝛼3 = 2. In what follows, you may use without proof that 𝒪𝐹 = Z[𝛼].
Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 7
in 𝒪𝐹.

12. Let 𝐹 = Q(𝜁) where 𝜁 is a primitive 5th root of 1. In what follows, you may use without
proof that 𝒪𝐹 = Z[𝜁]. Compute the prime factorizations, and the corresponding residue
degrees, of 2, 3, 5, and 11 in 𝒪𝐹.

13. Find all number fields 𝐹 with |𝑑𝐹 | ≤ 12.

We use the following notation and assumptions for next three problems. Let 𝐴 be a Dedekind
ring with fraction field 𝐹 and let 𝐾/𝐹 and 𝐸/𝐾 be finite separable extensions with 𝐸/𝐹 Galois.
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Let 𝑃 ⊂ 𝐴 be a nonzero prime ideal and assume that for any prime 𝑄 of 𝐸 above 𝑃, the residue
extension 𝑘(𝑄)/𝑘(𝑃) is separable.

14. (a) Prove that 𝑃 is unramified in 𝐾 if and only if 𝐾 ⊆ 𝐸𝐼𝑄 for every prime 𝑄 of 𝐸 above 𝑃.
(b) Assume that 𝐸 is the normal closure of 𝐾/𝐹. Prove that 𝑃 is unramified in 𝐾 if and only

if it is unramified in 𝐸.
(c) Let 𝐿/𝐹 be another subextension of 𝐸/𝐹. Prove that if 𝑃 is unramfied in both 𝐾 and 𝐿

if and only if it is unramified in the compositum 𝐾𝐿.

Recall/learn that if 𝐺 is a group, 𝐻 and 𝑁 are subgroups, and 𝑔 ∈ 𝐺, then we can form the double
coset

𝐻𝑔𝑁 = {ℎ𝑔𝑛 | ℎ ∈ 𝐻 and 𝑛 ∈ 𝑁}.
The double cosets partition 𝐺 and the set of these double cosets is denoted 𝐻\𝐺/𝑁 . One can
interpret this as the orbits of the left action of 𝐻 on the left cosets 𝐺/𝑁 or as the orbits of the right
action of 𝑁 on the right cosets 𝐻\𝐺.

15. (a) Let 𝐺 = Gal(𝐸/𝐹) and let 𝐻 = Gal(𝐸/𝐾). Let 𝑄 be a prime above 𝑃 in 𝐸. Show that the
map 𝜎 ↦→ 𝜎(𝑄) ∩𝐾 induces a bĳection from 𝐻\𝐺/𝐷𝑄 to the set of primes of 𝐾 above 𝑃.

(b) Assume that 𝐸 is the normal closure of 𝐾/𝐹. Prove that 𝑃 splits completely in 𝐾 if and
only if it splits completely in 𝐸.

(c) Let 𝐿/𝐹 be another subextension of 𝐸/𝐹. Prove that 𝑃 is totally split in both 𝐾 and 𝐿 if
and only if it is totally split in the compositum 𝐾𝐿.

16. Assume that 𝑃 is unramified in 𝐸 and that 𝑘(𝑃) is a finite field. Let 𝑄 be a prime of 𝐸 above
𝑃, and let Fr𝑄/𝑃 be the Frobenius at 𝑄. Let 𝑄𝐾 = 𝑄 ∩ 𝐾.
(a) Show that for any 𝜎 ∈ Gal(𝐸/𝐹), Fr𝜎(𝑄)/𝑃 = 𝜎 Fr𝑄/𝑃 𝜎

−1.
(b) Show that Fr𝑄/𝑄𝐾

= Fr 𝑓 (𝑄𝐾/𝑃)
𝑄/𝑃 .

(c) Show that if 𝐾/𝐹 is Galois, then Fr𝑄𝐾/𝑃 = Fr𝑄/𝑃 |𝐾 .
(d) Show that 𝑃 is totally split in 𝐸 if and only if Fr𝑄/𝑃 = 1.
(e) Show that 𝑃 is inert in 𝐸 if and only if Fr𝑄/𝑃 generates Gal(𝐸/𝐹).

Remark. The first part of the above question implies that the conjugacy class of Fr𝑄/𝑃 depends
only on 𝑃. In particular, if Gal(𝐸/𝐹) is abelian, then the element Fr𝑄/𝑃 depends only on 𝑃 and not
on 𝑄. In this case, we denote it by Fr𝑃 .

17. Let 𝐹/Q be quadratic and write 𝐹 = Q(
√
𝑑) with 𝑑 ∈ Z squarefree. Let 𝑝 be an odd prime

unramified in 𝐹 and let Fr𝑝 ∈ Gal(𝐸/𝐹) � {±1} be the Frobenius at 𝑝 (see the remark above).
Show that

Fr𝑝 =

{
1 if 𝑑 is a square in F𝑝 ,
−1 if 𝑑 is not a square in F𝑝 .

(This shows that Fr𝑝 recovers the Legendre symbol
(
𝑑
𝑝

)
.)


