HOMEWORK 2

Do at least 5 questions. Due November 6 at 11:59pm.

1. In this exercise, we show that every nonnegative integer is the sum of four squares.
This is trival for 0, 1, and 2, and there is an identity

(@®> + >+ c® + d*) (A2 + B>+ C?>+ D?) = (aA —bB — cC —dD)* + (aB + bA + ¢cD — dC)?
+(aC —bD + cA +dB)?> + (aD + bC — cB + dA)>.

So we are reduced to showing that every odd prime p is the sum of four squares. Prove this
via the following.
(a) Explain why the congruence m? + n? + 1 =0 (mod p) has a solutions in integers.
(b) Fix a solution n, m to the congruence in part (a), and let A C Z* be the set of (a,b, ¢, d)
such that ¢ = ma + nb (mod p) and d = mb —na (mod p). Show that A is a lattice in
R* with covolume p?.
(c) Use Minkowski’s Theorem to show thereis (a,b, ¢, d) € A such that a? +b%+c?+d? = p.

2. Let F be a number field with ring of integers Or. For any nonzero ideal I C Or, show that
N(I) = |Or/I| extends to a homomorphism N : Id(Of) — Q*, where Id(Or) is the group of
fractional ideals of Or.

3. Determine all quadratic fields F/Q such that % (%)S V|de| < 2, where dF is the discriminant
of F, s = 0if F is real quadratic, and s = 1 if F is imaginary quadratic. Deduce that they all
have class number 1.

4. Let F/Q be quadratic and write F = Q(Vd) withd # 0,1 square free.
(a) Show that for any p | d, the ideal P = (p, Vd) of Or is prime and satisfies P? = (p).
(b) Let p1,...,pr be the distinct prime divisors of d. By part (a), we have prime ideals
Pi,...,P, of Of such that Pl.2 = (pi). Show that P --- P, = (\/3).
(c) Assume that F is imaginary and let Py, ..., P, be as in part (b). Show that for any
1 < k < r, theideal P; - - - Py is not principal. Deduce that CI(F) contains a subgroup
isomorphic to a product of » — 1 cyclic groups of order 2.

5. Let F be a number field.
(a) Let I C Or be a nonzero ideal. Show that if n > 0 is an integer such that I" = (a), then
I generates a principal ideal in the ring of integers of F({/a).
(b) Show that there is a finite extension E /F such that every fractional ideal I of F generates
a principal fractional ideal of E.

6. Let A be a Dedekind ring with fraction field F. Let E/F be a finite separable extension, and
let B be the integral closure of A in E. Let b € B be nonzero.
(a) Show that ~2® ¢ B,
(b) Show that b € B* if and only if Ng,/r(b) € A
(c) Give an example of a number field E and 0 # x € E such that Ng,q(x) = +1 but x ¢ Of.
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7. Let F be a real quadratic field with discriminant d = dr. Recall that d is either 0 or 1 mod 4.
Fix some embedding ¢ : F < R and using it identify F with Q(Vd).
(a) Explain why there is ¢ € OF such that o(¢) > 1 and is minimal with this property.
Show that such an ¢ is a fundamental unit.
(b) Assume that there are solutions a,b € Z to

a? — db* = -4,

Show thatif a,b > 1 are minimal, then ¢ = is a fundamental unit.

(c) Assume that there are no solutions a,b € Z to a> — db? = —4. Then show that there are
solutions a,b € Z to

a+bVd
2

a?—db* =4,

a+bVd
2

and thatif a,b > 1 are minimal, then ¢ = is a fundamental unit.

Definition. Let F be a number field. We say F is totally real if every embedding of F into C is a real
embedding. We say F is fotally imaginary if F has no real embeddings. We say F is CM if it is a
totally imaginary quadratic extension of a totally real field.

8. Let E be a CM field with maximal totally real subfield F (so [E : F] = 2). Prove that the
index of u(E)OF in OF is at most 2. (Hint: Let ¢ be the nontrivial element of Gal(E/F) and

: (e)
consider the map ¢ - =)

9. Let F be a totally real number field. Let S be a proper nonempty subset of the embeddings
{0 : F = R}. Show that there is ¢ € Of such that0 < o(¢) < 1forall o € S and o(¢) > 1 for
all o ¢ S. (Hint: Letting n = [F : Q], we know that Log(j(O})) is a lattice in the trace zero
subspace H of R". Consider an appropriate translate an appropriate bounded region in H.)

10. Let A be a Dedekind ring with field of fractions F. Let E/F be a finite separable extension
and let B be the integral closure of A in E. For a nonzero prime ideal Q of B dividing the
prime ideal P of A, let f(Q) = [B/Q : A/P] be the residue degree. Define a homomorphism
Nmp/4 : Id(B) — Id(A) by setting Nmp,4(Q) = PfQ)if Q is a nonzero prime ideal of B and
QNA=P.

(a) Show that for 0 # x € E, we have Nmp,4(xB) = Nmg,r(x)A (here xB denotes the
principal fractional ideal generated by x, and similar notation for A).

(b) Show that if A = Z and E is a number field, then Nmy, /z(I) = |Og/I|Z for any nonzero
ideal I of O (so Nmy, /7 recovers our previous definition of the absolute norm).

11. Let F = Q(«) where a® = 2. In what follows, you may use without proof that Or = Z[a].
Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 7
in OF.

12. Let F = Q(C) where C is a primitive 5th root of 1. In what follows, you may use without
proof that O = Z[C]. Compute the prime factorizations, and the corresponding residue
degrees, of 2, 3, 5, and 11 in Or.

13. Find all number fields F with |df| < 12.

We use the following notation and assumptions for next three problems. Let A be a Dedekind
ring with fraction field F and let K/F and E/K be finite separable extensions with E/F Galois.
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Let P C A be a nonzero prime ideal and assume that for any prime Q of E above P, the residue
extension k(Q)/k(P) is separable.

14. (a) Prove that P is unramified in K if and only if K C E¢ for every prime Q of E above P.
(b) Assume that E is the normal closure of K/F. Prove that P is unramified in K if and only
if it is unramified in E.
(c) Let L/F be another subextension of E/F. Prove that if P is unramfied in both K and L
if and only if it is unramified in the compositum KL.

Recall/learn that if G is a group, H and N are subgroups, and g € G, then we can form the double
coset
HgN ={hgn|he€ Handn € N}.
The double cosets partition G and the set of these double cosets is denoted H\G/N. One can
interpret this as the orbits of the left action of H on the left cosets G/N or as the orbits of the right
action of N on the right cosets H\G.

15. (a) Let G = Gal(E/F) and let H = Gal(E/K). Let Q be a prime above P in E. Show that the
map o — o(Q) N K induces a bijection from H\G/Dg to the set of primes of K above P.
(b) Assume that E is the normal closure of K/F. Prove that P splits completely in K if and
only if it splits completely in E.
(c) Let L/F be another subextension of E/F. Prove that P is totally split in both K and L if
and only if it is totally split in the compositum KL.

16. Assume that P is unramified in E and that k(P) is a finite field. Let Q be a prime of E above
P, and let Frg,p be the Frobenius at Q. Let Qg = Q N K.
(a) Show that for any o € Gal(E/F), Fryq)p = 0 Frgp o7

(b) Show that Frg,q, = Fr) /",

(c) Show that if K/F is Galois, then Frg, /p = Frgp |k.
(d) Show that P is totally split in E if and only if Fro,p = 1.
(e) Show that P is inert in E if and only if Fro,p generates Gal(E/F).

Remark. The first part of the above question implies that the conjugacy class of Frg/p depends
only on P. In particular, if Gal(E/F) is abelian, then the element Fry,p depends only on P and not
on Q. In this case, we denote it by Frp.

17. Let F/Q be quadratic and write F = Q(Vd) with d € Z squarefree. Let p be an odd prime
unramified in F and let Fr, € Gal(E/F) = {+1} be the Frobenius at p (see the remark above).
Show that

Fr. = 1 if d is a square in Fp,
P71-1 ifdisnota square in [F,.

(This shows that Fr, recovers the Legendre symbol (%) )



