HOMEWORK 2

Do at least 5 questions. Due November 6 at 11:59pm.

1. In this exercise, we show that every nonnegative integer is the sum of four squares. This is trival for 0, 1, and 2, and there is an identity

$$(a^{2} + b^{2} + c^{2} + d^{2})(A^{2} + B^{2} + C^{2} + D^{2}) = (aA - bB - cC - dD)^{2} + (aB + bA + cD - dC)^{2} + (aC - bD + cA + dB)^{2} + (aD + bC - cB + dA)^{2}.$$

So we are reduced to showing that every odd prime *p* is the sum of four squares. Prove this via the following.

- (a) Explain why the congruence $m^2 + n^2 + 1 \equiv 0 \pmod{p}$ has a solutions in integers.
- (b) Fix a solution *n*, *m* to the congruence in part (a), and let $\Lambda \subseteq \mathbb{Z}^4$ be the set of (a, b, c, d)such that $c \equiv ma + nb \pmod{p}$ and $d \equiv mb - na \pmod{p}$. Show that Λ is a lattice in \mathbb{R}^4 with covolume p^2 .
- (c) Use Minkowski's Theorem to show there is $(a, b, c, d) \in \Lambda$ such that $a^2 + b^2 + c^2 + d^2 = p$.
- **2.** Let *F* be a number field with ring of integers O_F . For any nonzero ideal $I \subseteq O_F$, show that $N(I) = |O_F/I|$ extends to a homomorphism $N : Id(O_F) \to \mathbb{Q}^{\times}$, where $Id(O_F)$ is the group of fractional ideals of O_F .
- **3.** Determine all quadratic fields F/\mathbb{Q} such that $\frac{1}{2} \left(\frac{4}{\pi}\right)^s \sqrt{|d_F|} < 2$, where d_F is the discriminant of F, s = 0 if F is real quadratic, and s = 1 if F is imaginary quadratic. Deduce that they all have class number 1.
- **4.** Let F/\mathbb{Q} be quadratic and write $F = \mathbb{Q}(\sqrt{d})$ with $d \neq 0, 1$ square free.
 - (a) Show that for any $p \mid d$, the ideal $P = (p, \sqrt{d})$ of O_F is prime and satisfies $P^2 = (p)$.
 - (b) Let p_1, \ldots, p_r be the distinct prime divisors of *d*. By part (a), we have prime ideals P_1, \ldots, P_r of O_F such that $P_i^2 = (p_i)$. Show that $P_1 \cdots P_r = (\sqrt{d})$.
 - (c) Assume that F is imaginary and let P_1, \ldots, P_r be as in part (b). Show that for any $1 \le k < r$, the ideal $P_1 \cdots P_k$ is not principal. Deduce that Cl(F) contains a subgroup isomorphic to a product of r - 1 cyclic groups of order 2.
- 5. Let *F* be a number field.
 - (a) Let $I \subseteq O_F$ be a nonzero ideal. Show that if $n \ge 0$ is an integer such that $I^n = (a)$, then I generates a principal ideal in the ring of integers of $F(\sqrt[n]{a})$.
 - (b) Show that there is a finite extension E/F such that every fractional ideal I of F generates a principal fractional ideal of *E*.
- 6. Let A be a Dedekind ring with fraction field F. Let E/F be a finite separable extension, and let *B* be the integral closure of *A* in *E*. Let $b \in B$ be nonzero.

 - (a) Show that $\frac{N_{E/F}(b)}{b} \in B$. (b) Show that $b \in B^{\times}$ if and only if $N_{E/F}(b) \in A^{\times}$.
 - (c) Give an example of a number field *E* and $0 \neq x \in E$ such that $N_{E/\mathbb{Q}}(x) = \pm 1$ but $x \notin O_E$.

- 7. Let *F* be a real quadratic field with discriminant $d = d_F$. Recall that *d* is either 0 or 1 mod 4. Fix some embedding σ : $F \hookrightarrow \mathbb{R}$ and using it identify F with $\mathbb{Q}(\sqrt{d})$.
 - (a) Explain why there is $\varepsilon \in O_F^{\times}$ such that $\sigma(\varepsilon) > 1$ and is minimal with this property. Show that such an ε is a fundamental unit.
 - (b) Assume that there are solutions $a, b \in \mathbb{Z}$ to

$$a^2 - db^2 = -4.$$

Show that if $a, b \ge 1$ are minimal, then $\varepsilon = \frac{a+b\sqrt{d}}{2}$ is a fundamental unit. (c) Assume that there are no solutions $a, b \in \mathbb{Z}$ to $a^2 - db^2 = -4$. Then show that there are solutions $a, b \in \mathbb{Z}$ to

$$a^2 - db^2 = 4,$$

and that if $a, b \ge 1$ are minimal, then $\varepsilon = \frac{a+b\sqrt{d}}{2}$ is a fundamental unit.

Definition. Let *F* be a number field. We say *F* is *totally real* if every embedding of *F* into \mathbb{C} is a real embedding. We say F is totally imaginary if F has no real embeddings. We say F is CM if it is a totally imaginary quadratic extension of a totally real field.

- **8.** Let *E* be a CM field with maximal totally real subfield *F* (so [E : F] = 2). Prove that the index of $\mu(E)O_F^{\times}$ in O_E^{\times} is at most 2. (Hint: Let *c* be the nontrivial element of Gal(*E*/*F*) and consider the map $\varepsilon \mapsto \frac{-\varepsilon(\varepsilon)}{\varepsilon}$.)
- 9. Let *F* be a totally real number field. Let *S* be a proper nonempty subset of the embeddings $\{\sigma: F \hookrightarrow \mathbb{R}\}$. Show that there is $\varepsilon \in O_F^{\times}$ such that $0 < \sigma(\varepsilon) < 1$ for all $\sigma \in S$ and $\sigma(\varepsilon) > 1$ for all $\sigma \notin S$. (Hint: Letting $n = [F : \mathbb{Q}]$, we know that $\text{Log}(j(O_F^{\times}))$ is a lattice in the trace zero subspace *H* of \mathbb{R}^n . Consider an appropriate translate an appropriate bounded region in *H*.)
- **10.** Let *A* be a Dedekind ring with field of fractions *F*. Let E/F be a finite separable extension and let B be the integral closure of A in E. For a nonzero prime ideal Q of B dividing the prime ideal *P* of *A*, let f(Q) = [B/Q : A/P] be the residue degree. Define a homomorphism $\operatorname{Nm}_{B/A}$: $\operatorname{Id}(B) \to \operatorname{Id}(A)$ by setting $\operatorname{Nm}_{B/A}(Q) = P^{f(Q)}$ if Q is a nonzero prime ideal of B and $Q \cap A = P$.
 - (a) Show that for $0 \neq x \in E$, we have $Nm_{B/A}(xB) = Nm_{E/F}(x)A$ (here *xB* denotes the principal fractional ideal generated by *x*, and similar notation for *A*).
 - (b) Show that if $A = \mathbb{Z}$ and *E* is a number field, then $\operatorname{Nm}_{O_E/\mathbb{Z}}(I) = |O_E/I|\mathbb{Z}$ for any nonzero ideal *I* of O_E (so Nm_{O_E/\mathbb{Z}} recovers our previous definition of the absolute norm).
- **11.** Let $F = \mathbb{Q}(\alpha)$ where $\alpha^3 = 2$. In what follows, you may use without proof that $O_F = \mathbb{Z}[\alpha]$. Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 7 in O_F .
- **12.** Let $F = \mathbb{Q}(\zeta)$ where ζ is a primitive 5th root of 1. In what follows, you may use without proof that $O_F = \mathbb{Z}[\zeta]$. Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 11 in O_F .
- **13.** Find all number fields *F* with $|d_F| \leq 12$.

We use the following notation and assumptions for next three problems. Let A be a Dedekind ring with fraction field F and let K/F and E/K be finite separable extensions with E/F Galois. Let $P \subset A$ be a nonzero prime ideal and assume that for any prime Q of E above P, the residue extension k(Q)/k(P) is separable.

- **14.** (a) Prove that *P* is unramified in *K* if and only if $K \subseteq E^{I_Q}$ for every prime *Q* of *E* above *P*.
 - (b) Assume that *E* is the normal closure of *K*/*F*. Prove that *P* is unramified in *K* if and only if it is unramified in *E*.
 - (c) Let L/F be another subextension of E/F. Prove that if P is unramfied in both K and L if and only if it is unramified in the compositum KL.

Recall/learn that if *G* is a group, *H* and *N* are subgroups, and $g \in G$, then we can form the *double coset*

$$HgN = \{hgn \mid h \in H \text{ and } n \in N\}.$$

The double cosets partition *G* and the set of these double cosets is denoted $H \setminus G/N$. One can interpret this as the orbits of the left action of *H* on the left cosets G/N or as the orbits of the right action of *N* on the right cosets $H \setminus G$.

- **15.** (a) Let G = Gal(E/F) and let H = Gal(E/K). Let Q be a prime above P in E. Show that the map $\sigma \mapsto \sigma(Q) \cap K$ induces a bijection from $H \setminus G/D_Q$ to the set of primes of K above P.
 - (b) Assume that *E* is the normal closure of *K*/*F*. Prove that *P* splits completely in *K* if and only if it splits completely in *E*.
 - (c) Let *L*/*F* be another subextension of *E*/*F*. Prove that *P* is totally split in both *K* and *L* if and only if it is totally split in the compositum *KL*.
- **16.** Assume that *P* is unramified in *E* and that k(P) is a finite field. Let *Q* be a prime of *E* above *P*, and let $\operatorname{Fr}_{Q/P}$ be the Frobenius at *Q*. Let $Q_K = Q \cap K$.
 - (a) Show that for any $\sigma \in \text{Gal}(E/F)$, $\text{Fr}_{\sigma(Q)/P} = \sigma \text{Fr}_{Q/P} \sigma^{-1}$.
 - (b) Show that $\operatorname{Fr}_{Q/Q_K} = \operatorname{Fr}_{Q/P}^{f(Q_K/P)}$.
 - (c) Show that if K/F is Galois, then $\operatorname{Fr}_{Q_K/P} = \operatorname{Fr}_{Q/P}|_K$.
 - (d) Show that *P* is totally split in *E* if and only if $Fr_{O/P} = 1$.
 - (e) Show that *P* is inert in *E* if and only if $Fr_{O/P}$ generates Gal(E/F).

Remark. The first part of the above question implies that the conjugacy class of $Fr_{Q/P}$ depends only on *P*. In particular, if Gal(E/F) is abelian, then the element $Fr_{Q/P}$ depends only on *P* and not on *Q*. In this case, we denote it by Fr_P .

17. Let F/\mathbb{Q} be quadratic and write $F = \mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z}$ squarefree. Let p be an odd prime unramified in F and let $\operatorname{Fr}_p \in \operatorname{Gal}(E/F) \cong \{\pm 1\}$ be the Frobenius at p (see the remark above). Show that

$$\operatorname{Fr}_{p} = \begin{cases} 1 & \text{if } d \text{ is a square in } \mathbb{F}_{p}, \\ -1 & \text{if } d \text{ is not a square in } \mathbb{F}_{p}. \end{cases}$$

(This shows that Fr_p recovers the Legendre symbol $\left(\frac{d}{p}\right)$.)