HOMEWORK 2

Do at least 5 questions. Due November 6 at 11:59pm.

1. In this exercise, we show that every nonnegative integer is the sum of four squares. This is trival for 0, 1, and 2, and there is an identity

$$
(a2 + b2 + c2 + d2)(A2 + B2 + C2 + D2) = (aA - bB - cC - dD)2 + (aB + bA + cD - dC)2 + (aC - bD + cA + dB)2 + (aD + bC - cB + dA)2.
$$

So we are reduced to showing that every odd prime p is the sum of four squares. Prove this via the following.

- (a) Explain why the congruence $m^2 + n^2 + 1 \equiv 0 \pmod{p}$ has a solutions in integers.
(b) Fix a solution *n* m to the congruence in part (a) and let $\Lambda \subset \mathbb{Z}^4$ be the set of (a, h
- (b) Fix a solution *n*, *m* to the congruence in part (a), and let $\Lambda \subseteq \mathbb{Z}^4$ be the set of (a, b, c, d)
such that $c = ma + nh$ (mod *n*) and $d = mh na$ (mod *n*). Show that Λ is a lattice in such that $c \equiv ma + nb \pmod{p}$ and $d \equiv mb - na \pmod{p}$. Show that Λ is a lattice in \mathbb{R}^4 with covolume p^2 .
Heo Minkowski's The
- (c) Use Minkowski's Theorem to show there is $(a, b, c, d) \in \Lambda$ such that $a^2 + b^2 + c^2 + d^2 = p$.
- **2.** Let *F* be a number field with ring of integers O_F . For any nonzero ideal $I \subseteq O_F$, show that $N(I) = |O_F/I|$ extends to a homomorphism $N : Id(O_F) \to \mathbb{Q}^{\times}$, where Id (O_F) is the group of fractional ideals of O_F .
- **3.** Determine all quadratic fields F/Q such that $\frac{1}{2} \left(\frac{4}{\pi}\right)^s \sqrt{|d_F|} < 2$, where d_F is the discriminant of $F \succeq 0$ if F is real quadratic, and $s = 1$ if F is imaginary quadratic. Deduce that they all of F , $s = 0$ if F is real quadratic, and $s = 1$ if F is imaginary quadratic. Deduce that they all have class number 1.
- **4.** Let F/Q be quadratic and write $F = Q(\sqrt{d})$ with $d \neq 0, 1$ square free.
	- Let F/\mathbb{Q} be quadratic and write $F = \mathbb{Q}(\nabla d)$ with $d \neq 0$, I square free.

	(a) Show that for any $p \mid d$, the ideal $P = (p, \sqrt{d})$ of O_F is prime and satisfies $P^2 = (p)$.

	(b) Let p_1, \ldots, p_n be the distinct pri

√

- (b) Let p_1, \ldots, p_r be the distinct prime divisors of *d*. By part (a), we have prime ideals P_1, \ldots, P_r of O_F such that $P_i^2 = (p_i)$. Show that $P_1 \cdots P_r = (\sqrt{d})$.
Assume that E is imaginary and let P_i be as in part (
- (c) Assume that *F* is imaginary and let P_1, \ldots, P_r be as in part (b). Show that for any $1 \le k \le r$ the ideal P_1, \ldots, P_r is not principal. Deduce that $Cl(F)$ contains a subgroup $1 \leq k < r$, the ideal $P_1 \cdots P_k$ is not principal. Deduce that Cl(F) contains a subgroup isomorphic to a product of $r - 1$ cyclic groups of order 2.
- **5.** Let *F* be a number field.
	- (a) Let $I \subseteq O_F$ be a nonzero ideal. Show that if $n \ge 0$ is an integer such that $I^n = (a)$, then
L concrates a principal ideal in the ring of integers of $E(\mathcal{F}_a)$ *I* generates a principal ideal in the ring of integers of $F(\sqrt[n]{a})$.
Show that there is a finite extension F/F such that every fract
	- (b) Show that there is a finite extension E/F such that every fractional ideal I of F generates a principal fractional ideal of E.
- **6.** Let A be a Dedekind ring with fraction field F . Let E/F be a finite separable extension, and let *B* be the integral closure of *A* in *E*. Let $b \in B$ be nonzero.
	- (a) Show that $\frac{\breve{N}_{E/F}(b)}{b} \in B$.
(b) Show that $b \in B^{\times}$ if an
	- (b) Show that $b \in B^{\times}$ if and only if $N_{E/F}(b) \in A^{\times}$.
(c) Give an example of a number field F and 0 \pm
	- (c) Give an example of a number field *E* and $0 \neq x \in E$ such that $N_{E/O}(x) = \pm 1$ but $x \notin O_E$.
- **7.** Let *F* be a real quadratic field with discriminant $d = d_F$. Recall that *d* is either 0 or 1 mod 4. Fix some embedding σ : $F \hookrightarrow \mathbb{R}$ and using it identify F with $\mathbb{Q}(\sqrt{d})$.
(a) Explain why there is $\varepsilon \in \mathbb{O}^\times$ such that $\sigma(\varepsilon) > 1$ and is minimi
	- (a) Explain why there is $\varepsilon \in O_F^{\times}$ such that $\sigma(\varepsilon) > 1$ and is minimal with this property. Show that such an ε is a fundamental unit.
	- (b) Assume that there are solutions $a, b \in \mathbb{Z}$ to

$$
a^2 - db^2 = -4.
$$

Show that if $a, b \ge 1$ are minimal, then $\varepsilon = \frac{a+b\sqrt{2}}{2}$. $\frac{1}{2}$ is a fundamental unit.

(c) Assume that there are no solutions $a, b \in \mathbb{Z}$ to $a^2 - db^2 = -4$. Then show that there are solutions $a, b \in \mathbb{Z}$ to solutions $a, b \in \mathbb{Z}$ to

$$
a^2 - db^2 = 4,
$$

and that if $a, b \ge 1$ are minimal, then $\varepsilon = \frac{a+b\sqrt{a}}{2}$ $\frac{1}{2}$ is a fundamental unit.

Definition. Let F be a number field. We say F is *totally real* if every embedding of F into C is a real embedding. We say F is *totally imaginary* if F has no real embeddings. We say F is CM if it is a totally imaginary quadratic extension of a totally real field.

- **8.** Let *E* be a CM field with maximal totally real subfield *F* (so $[E : F] = 2$). Prove that the index of $\mu(E)O_F^{\times}$ in O_E^{\times} is at most 2. (Hint: Let *c* be the nontrivial element of Gal(E/F) and consider the map $\varepsilon \mapsto \frac{c(\varepsilon)}{\varepsilon}$.)
- **9.** Let F be a totally real number field. Let S be a proper nonempty subset of the embeddings $\{\sigma : F \hookrightarrow \mathbb{R}\}.$ Show that there is $\varepsilon \in O_F^{\times}$ such that $0 < \sigma(\varepsilon) < 1$ for all $\sigma \in S$ and $\sigma(\varepsilon) > 1$ for all $\sigma \notin S$. (Hint: Letting $u = [F : \mathbb{R}]$, we know that $\log(i(O^{\times}))$ is a lattice in the trace zero. all $\sigma \notin S$. (Hint: Letting $n = [F : \mathbb{Q}]$, we know that $Log(j(O_F^{\times}))$ is a lattice in the trace zero subspace H of \mathbb{R}^n . Consider an appropriate translate an appropriate bounded region in H) subspace H of \mathbb{R}^n . Consider an appropriate translate an appropriate bounded region in H .)
- **10.** Let A be a Dedekind ring with field of fractions F . Let E/F be a finite separable extension and let *B* be the integral closure of *A* in *E*. For a nonzero prime ideal *Q* of *B* dividing the prime ideal P of A, let $f(Q) = [B/Q : A/P]$ be the residue degree. Define a homomorphism $\text{Nm}_{B/A}: \text{Id}(B) \to \text{Id}(A)$ by setting $\text{Nm}_{B/A}(Q) = P^{f(Q)}$ if Q is a nonzero prime ideal of B and $Q \cap A = P$ $Q \cap A = P$.
	- (a) Show that for $0 \neq x \in E$, we have $Nm_{B/A}(xB) = Nm_{E/F}(x)A$ (here xB denotes the principal fractional ideal generated by x , and similar notation for A).
	- (b) Show that if $A = \mathbb{Z}$ and E is a number field, then $Nm_{Q_E/\mathbb{Z}}(I) = |Q_E/I|\mathbb{Z}$ for any nonzero ideal *I* of O_E (so Nm_{O_F/Z} recovers our previous definition of the absolute norm).
- **11.** Let $F = \mathbb{Q}(\alpha)$ where $\alpha^3 = 2$. In what follows, you may use without proof that $O_F = \mathbb{Z}[\alpha]$.
Compute the prime factorizations, and the corresponding residue degrees of 2,3,5, and 7 Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 7 in O_F .
- **12.** Let $F = \mathbb{Q}(\zeta)$ where ζ is a primitive 5th root of 1. In what follows, you may use without proof that $O_F = \mathbb{Z}[\zeta]$. Compute the prime factorizations, and the corresponding residue degrees, of 2, 3, 5, and 11 in O_F .
- **13.** Find all number fields *F* with $|d_F| \le 12$.

We use the following notation and assumptions for next three problems. Let A be a Dedekind ring with fraction field F and let K/F and E/K be finite separable extensions with E/F Galois. Let $P \subset A$ be a nonzero prime ideal and assume that for any prime Q of E above P, the residue extension $k(Q)/k(P)$ is separable.

- **14.** (a) Prove that *P* is unramified in *K* if and only if $K \subseteq E^{I_Q}$ for every prime *Q* of *E* above *P*.
(b) Assume that *F* is the pormal closure of K/F Prove that *P* is unramified in *K* if and only
	- (b) Assume that E is the normal closure of K/F . Prove that P is unramified in K if and only if it is unramified in E .
	- (c) Let L/F be another subextension of E/F . Prove that if P is unramfied in both K and L if and only if it is unramified in the compositum KL .

Recall/learn that if G is a group, H and N are subgroups, and $g \in G$, then we can form the *double coset*

$$
HgN = \{ hgn \mid h \in H \text{ and } n \in N \}.
$$

The double cosets partition *G* and the set of these double cosets is denoted $H\backslash G/N$. One can interpret this as the orbits of the left action of *H* on the left cosets *G/N* or as the orbits of the right interpret this as the orbits of the left action of H on the left cosets G/N or as the orbits of the right action of N on the right cosets $H\backslash G$.

- **15.** (a) Let $G = \text{Gal}(E/F)$ and let $H = \text{Gal}(E/K)$. Let Q be a prime above P in E. Show that the map $\sigma \mapsto \sigma(Q) \cap K$ induces a bijection from $H \backslash G/D_Q$ to the set of primes of K above P.
	- (b) Assume that E is the normal closure of K/F . Prove that P splits completely in K if and only if it splits completely in E .
	- (c) Let L/F be another subextension of E/F . Prove that P is totally split in both K and L if and only if it is totally split in the compositum KL .
- **16.** Assume that P is unramified in E and that $k(P)$ is a finite field. Let Q be a prime of E above *P*, and let Fr_{*O*/*P*} be the Frobenius at *Q*. Let $Q_K = Q \cap K$.
	- (a) Show that for any $\sigma \in \text{Gal}(E/F)$, $\text{Fr}_{\sigma(Q)/P} = \sigma \text{ Fr}_{Q/P} \sigma^{-1}$.
	- (b) Show that $\text{Fr}_{Q/Q_K} = \text{Fr}_{Q/P}^{f(Q_K/P)}$.
(c) Show that if K/E is Colois, the
	- (c) Show that if K/F is Galois, then $Fr_{Q_K/P} = Fr_{Q/P} |_{K}$.
	- (d) Show that P is totally split in E if and only if $Fr_{Q/P} = 1$.
	- (e) Show that P is inert in E if and only if $\text{Fr}_{O/P}$ generates $\text{Gal}(E/F)$.

Remark. The first part of the above question implies that the conjugacy class of $\text{Fr}_{O/P}$ depends only on P. In particular, if $Gal(E/F)$ is abelian, then the element $Fr_{O/P}$ depends only on P and not on Q . In this case, we denote it by Fr_p .

17. Let F/Q be quadratic and write $F = \mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z}$ squarefree. Let p be an odd prime unramified in F and let $\text{Fr} \in \text{Gal}(F/F) \cong \{+1\}$ be the Frobenius at n (see the remark above) √ unramified in F and let $Fr_p \in Gal(E/F) \cong {\pm 1}$ be the Frobenius at p (see the remark above). Show that

 \mathbf{r}

$$
\text{Fr}_p = \begin{cases} 1 & \text{if } d \text{ is a square in } \mathbb{F}_p, \\ -1 & \text{if } d \text{ is not a square in } \mathbb{F}_p. \end{cases}
$$

(This shows that Fr_p recovers the Legendre symbol $(\frac{d}{p})$.)