HOMEWORK 1

Do at least 5 questions. Due September 30 at 11:59pm.

1. Let *d* ∈ \mathbb{Z} be square free and ≠ 0, 1. Show that the integral closure of \mathbb{Z} in \mathbb{Q} (\overline{d}) is Z[$\text{Ind} \neq 0, 1$. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\sqrt{d}]$ if \sqrt{d} $d \not\equiv 1 \pmod{4}$ and is $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ if $d \equiv 1 \pmod{4}$.

√

- **2.** Let $A \subseteq B$ be integral domains with B integral over A. Prove that B is a field if and only if A is a field.
- **3.** Let $n \ge 2$ and let ζ , ζ' be primitive *n*th roots of unity in some field extension of \mathbb{Q} .
	- (a) Show that $\frac{1-\tilde{\zeta}'}{1-\tilde{\zeta}}$ $\frac{1-\zeta}{1-\zeta}$ is an algebraic integer.
	- (b) Show that if n has at least two prime factors, then 1ζ is a unit in $\mathbb{Z}[\zeta]$.
- **4.** Let *A* be a UFD with fraction field *F* and let E/F be an extension of fields. Let $x \in E$ be algebraic over F with minimal polynomial $f \in F[t]$. Prove that x is integral over A if and only if $f \in A[t]$.
- **5.** It can be shown that the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ is $\mathbb{Z}[\sqrt[3]{2}]$. Compute the discriminant of $\mathbb{Z}[\sqrt[3]{2}]$ $\mathbb{Z}[\sqrt[3]{2}].$
- **6.** Let *F* be a number field of degree *n* over $\mathbb Q$ such that $O_F = \mathbb Z[\alpha]$ for some $\alpha \in F$. (The basis { $1, \alpha, \ldots, \alpha^{n-1}$ } is usually referred to as a *power basis* for *F*. Power bases don't always exist.) Let f be the minimal polynomial of α over $\mathbb Q$, and let $\alpha = \alpha_1, \dots, \alpha_n$ be the roots of f. Show that the discriminant of F equals the discriminant of f , i.e.

$$
d_F = \prod_{i < j} (\alpha_i - \alpha_j)^2
$$

7. Let $F(\alpha)/F$ be a finite separable extension of degree *n* generated by α , let $f \in F[t]$ be the minimal polynomial of α over F, and let f' be its derivative. Show that

$$
d(1, \alpha, \ldots, \alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \mathrm{Nm}_{F(\alpha)/F}(f'(\alpha)).
$$

- **8.** Let *A* be a normal Noetherian domain with fraction field *F*. Let E/F be a finite separable extension and let B be the integral closure of A in E .
	- (a) Let $M \subset E$ be a finitely generated nonzero *B*-submodule of *E*. Prove that

$$
M^* := \{ x \in E : \text{Tr}_{E/F}(xM) \subseteq A \}
$$

is a also finitely generated B -submodule of E .

- (b) Consider the case of $A = \mathbb{Z}$ and $M = O_E$ the ring of integers in a number field E. Show that $\mathfrak{D}_{E/\mathbb{Q}} := \{ x \in E : xO_E^* \subseteq O_E \}$ is an ideal in O_E . This is called the *different* of the extension E/\mathbb{Q} extension E/\mathbb{O} .
- **9.** Let E/\mathbb{Q} be a quadratic extension. We use the notation and definitions of Question 8.
	- (a) Compute O_F^* .
	- (b) Compute the different $\mathfrak{D}_{E/\mathbb{Q}}$ of the extension E/\mathbb{Q} .

(c) Compute the ideal in Z generated by $\{Nm_{E/O}(x) : x \in \mathfrak{D}_{E/O}\}\)$. Where have you seen this before?

√

- **10.** Let $d \neq 0, 1$ be a squarefree integer, let $F = \mathbb{Q}(\ln k 2d)$. Prove that nQ_n is a prime ideal in Q_n if \overline{d}), and let *p* be a prime number such that $p \nmid 2d$. Prove that pO_F is a prime ideal in O_F if and only if $x^2 \equiv d \pmod{p}$ has no solutions in $x \in \mathbb{Z}$ (Hint: Note that O_F/pO_F is 2-dimensional over $\mathbb{E} - \mathbb{Z}/p\mathbb{Z}$) in $x \in \mathbb{Z}$. (Hint: Note that \overline{O}_F/pO_F is 2-dimensional over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.)
- **11.** Prove that a Dedekind domain with only finitely many prime ideals is a principal ideal domain.
- **12.** Let *A* be a Dedekind doamin.
	- (a) Let $J \subseteq I$ be nonzero ideals in A. Prove there is $a \in I$ such that $I = J + (a)$.
	- (b) Prove that any ideal in A can be generated by at most two elements.
- **13.** Prove that a Dedekind domain is a UFD if and only if it is a PID.
- **14.** Let A be a Dedekind domain.
	- (a) Prove that for any ideals $J \subseteq I$ of A, there is an ideal H of A such that $J = IH$.
	- (b) Prove that for any nonzero ideal I of A , there is a nonzero ideal H of A such that IH is principal.
- **15.** Let *I* be an ideal of a Dedekind domain *A*. Prove that *I* is a direct summand of A^2 as an *A*-module (Hint: Question **12** above shows there is a surjection $f: A^2 \to I$. To show that A-module. (Hint: Question **12.** above shows there is a surjection $f : A^2 \to I$. To show that
Lis a direct summand of A^2 it suffices to show there is an A -module man $s : I \to A^2$ such *I* is a direct summand of A^2 , it suffices to show there is an A-module map $s: I \to A^2$ such that $f \circ s = id$ Ouestion 14 is useful for constructing s) that $f \circ s = id$. Question **14.** is useful for constructing s .)
- 16. Let A be a Dedekind domain and let S be a finite set of nonzero prime ideals of A. Prove that any element of $Cl(A)$ can be represented by an ideal of A that is not divisible by any element in S .