HOMEWORK 1

Do at least 5 questions. Due September 30 at 11:59pm.

- **1.** Let $d \in \mathbb{Z}$ be square free and $\neq 0, 1$. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\sqrt{d}]$ if $d \not\equiv 1 \pmod{4}$ and is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \pmod{4}$.
- **2.** Let $A \subseteq B$ be integral domains with B integral over A. Prove that B is a field if and only if A is a field.
- **3.** Let $n \ge 2$ and let ζ, ζ' be primitive *n*th roots of unity in some field extension of \mathbb{Q} .

 - (a) Show that 1-ζ/1-ζ is an algebraic integer.
 (b) Show that if *n* has at least two prime factors, then 1 ζ is a unit in Z[ζ].
- **4.** Let *A* be a UFD with fraction field *F* and let E/F be an extension of fields. Let $x \in E$ be algebraic over F with minimal polynomial $f \in F[t]$. Prove that x is integral over A if and only if $f \in A[t]$.
- 5. It can be shown that the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ is $\mathbb{Z}[\sqrt[3]{2}]$. Compute the discriminant of $\mathbb{Z}[\sqrt[3]{2}].$
- **6.** Let *F* be a number field of degree *n* over \mathbb{Q} such that $O_F = \mathbb{Z}[\alpha]$ for some $\alpha \in F$. (The basis $\{1, \alpha, \ldots, \alpha^{n-1}\}$ is usually referred to as a *power basis* for *F*. Power bases don't always exist.) Let *f* be the minimal polynomial of α over \mathbb{Q} , and let $\alpha = \alpha_1, \ldots, \alpha_n$ be the roots of *f*. Show that the discriminant of F equals the discriminant of f, i.e.

$$d_F = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

7. Let $F(\alpha)/F$ be a finite separable extension of degree n generated by α , let $f \in F[t]$ be the minimal polynomial of α over *F*, and let f' be its derivative. Show that

$$d(1,\alpha,\ldots,\alpha^{n-1})=(-1)^{\frac{n(n-1)}{2}}\operatorname{Nm}_{F(\alpha)/F}(f'(\alpha)).$$

- **8.** Let *A* be a normal Noetherian domain with fraction field *F*. Let E/F be a finite separable extension and let *B* be the integral closure of *A* in *E*.
 - (a) Let $M \subset E$ be a finitely generated nonzero B-submodule of E. Prove that

$$M^* := \{ x \in E : \operatorname{Tr}_{E/F}(xM) \subseteq A \}$$

is a also finitely generated *B*-submodule of *E*.

- (b) Consider the case of $A = \mathbb{Z}$ and $M = O_E$ the ring of integers in a number field *E*. Show that $\mathfrak{D}_{E/\mathbb{Q}} := \{x \in E : xO_E^* \subseteq O_E\}$ is an ideal in O_E . This is called the *different* of the extension E/\mathbb{O} .
- **9.** Let E/\mathbb{Q} be a quadratic extension. We use the notation and definitions of Question **8.**
 - (a) Compute O_F^* .
 - (b) Compute the different $\mathfrak{D}_{E/\mathbb{Q}}$ of the extension E/\mathbb{Q} .

- (c) Compute the ideal in \mathbb{Z} generated by $\{Nm_{E/\mathbb{Q}}(x) : x \in \mathfrak{D}_{E/\mathbb{Q}}\}$. Where have you seen this before?
- **10.** Let $d \neq 0, 1$ be a squarefree integer, let $F = \mathbb{Q}(\sqrt{d})$, and let p be a prime number such that $p \nmid 2d$. Prove that pO_F is a prime ideal in O_F if and only if $x^2 \equiv d \pmod{p}$ has no solutions in $x \in \mathbb{Z}$. (Hint: Note that O_F/pO_F is 2-dimensional over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.)
- **11.** Prove that a Dedekind domain with only finitely many prime ideals is a principal ideal domain.
- **12.** Let *A* be a Dedekind doamin.
 - (a) Let $J \subseteq I$ be nonzero ideals in A. Prove there is $a \in I$ such that I = J + (a).
 - (b) Prove that any ideal in *A* can be generated by at most two elements.
- 13. Prove that a Dedekind domain is a UFD if and only if it is a PID.
- **14.** Let *A* be a Dedekind domain.
 - (a) Prove that for any ideals $J \subseteq I$ of A, there is an ideal H of A such that J = IH.
 - (b) Prove that for any nonzero ideal *I* of *A*, there is a nonzero ideal *H* of *A* such that *IH* is principal.
- **15.** Let *I* be an ideal of a Dedekind domain *A*. Prove that *I* is a direct summand of A^2 as an *A*-module. (Hint: Question **12.** above shows there is a surjection $f : A^2 \rightarrow I$. To show that *I* is a direct summand of A^2 , it suffices to show there is an *A*-module map $s : I \rightarrow A^2$ such that $f \circ s = \text{id.}$ Question **14.** is useful for constructing *s*.)
- **16.** Let *A* be a Dedekind domain and let *S* be a finite set of nonzero prime ideals of *A*. Prove that any element of Cl(A) can be represented by an ideal of *A* that is not divisible by any element in *S*.